Int. J. Solids Structures Vol. 34, No. 9, pp. 1035-1051, 1997
© 1997 Elsevier Science Ltd
Pergamon

Printed in Great Britain. All rights reserved
PII: S0020-7683(96)00050-9

0020-7683/97 $17.00 + .00

TIME DEPENDENT CRACKS IN CERAMIC
MATRIX COMPOSITES: CRACK GROWTH
INITIATION

M. R. BEGLEY*
The Division of Applied Science, Harvard University, Cambridge, MA 02138, U.S.A.

(Received 8 November 1995 ; in revised form 2 April 1996)

Abstract—Ceramic matrix composites at high temperatures exhibit time-dependent behavior due
to fiber creep, even though the matrix remains elastic. The time-dependent behavior of bridged
cracks for such materials is modeled using a bridging law developed previously which describes the
effects of fibers bridging a matrix crack and accounts for frictional sliding between the fibers and
the matrix. Approximations which simplify the bridging law are presented for short cracks or high
loads. In particular, regimes are identified where the history-dependence of the crack opening rate
can be neglected. Using a simplified form of the bridging law, results are presented for the general
evolution of bridged stationary cracks. Determination of the bridging stress profile at a given instant
in time allows calculation of the crack tip stress intensity factor as a function of time, leading to
estimates for the time to initiate time-dependent crack growth. The results indicate that for very
high loads and very short cracks, a simple form of bridging law can be used to produce accurate
estimates for the initiation time to begin growing matrix cracks. © 1997 Elsevier Science Ltd. All
rights reserved.

NOMENCLATURE
K., stress intensity factor at the matrix crack tip
K, matrix toughness scaled for volume fraction (i.c., K, =(1—/)K7)
a, a, crack half-length and unbridged zone half-length
T shear sliding stress between the fibers and matrix
D diameter of the fibers
f fiber volume fraction
E.E, Young’s modulus of the fibers and the matrix,
E, =fE+(1-f)E, rule of mixtures Young’s modulus for the composite
E Young’s modulus which accounts for orthotropy
L= D(1-/)’E, rate-independent bridging law coefficient
41f*E,E}
E,—~(1-/)E, . . o
n= f’—(E—f)— coefficient used in the rate-dependent bridging law
L
C(o,t,T) convolution integral used in the bridging law
B creep coefficient of the fibers
B = BE, modified creep coefficient
E; . N . .
T= ﬁ—_f)ﬂ characteristic relaxation time for the intact composite
_ BEE
8= e e modified creep coefficient for the simplified bridging law
2(1-)E,
3,6 total crack opening and opening rate
0,6 bridging traction and traction rate
o, applied load
i E
= ATG normalized bridging traction
AEa, . .
X, = aa normalized applied load
K

= tip
G/ T

* Formerly at the Mechanical and Environmental Engineering Department, College of Engineering, Uni-
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normalized stress intensity factor at the matrix crack tip.
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1. INTRODUCTION

Ceramic matrix composites reinforced with long ceramic fibers exhibit a variety of creep
modes at high temperatures (Evans and Zok, 1994 ; Holmes and Chermand, 1993). The
mode in which fibers creep and the matrix is elastic has often been identified as the most
critical. Fiber creep sheds loads to the matrix, increasing the likelihood of matrix cracking.
Also, bridged crack growth is possible even under constant load, as creeping fibers will
provide bridging tractions which decay with time (Henager and Jones, 1993, 1994 ; Begley
et al., 1995). Since bridged cracks geometries are often considered to be unavoidable, the
time-dependent behavior of bridged cracks is of central interest.

Predicting the time dependent high temperature behavior of bridged cracks in CMCs
can be thought to have two primary components : i) predicting the time it takes to initiate
rate-dependent crack growth and ii) predicting crack growth evolution and fiber failure in
order to determine rupture times. Clearly the magnitudes of these times will govern the
relative importance of each component ; if time to initiate crack growth is long and the
ensuing crack growth is rapid, the initiation time will be of more significance. Conversely,
if crack growth starts rapidly after exposing the material to creep temperatures but growth
rates are slow, initiation times are not as important as determining relevant crack growth
rates. Relevant crack growth studies have been performed previously (Begley et al., 1995;
Begley et al., 1995a, 1995b). Initiation times for bridged cracks in CMCs are presented
here.

In order for initiation times to be pertinent, a bridged crack geometry must exist in
which the stress intensity at the matrix crack tip, K, is lower than the matrix toughness
adjusted for the matrix volume fraction, denoted K. The initiation time to crack growth is
then the amount of time it takes to degrade the bridging tractions sufficiently to raise the
crack tip stress intensity factor to K.. (If the bridged geometry is created under the condition
K, = K,, such as the case considered in [Begley et al., 1995a], the initiation time will be
zero.) There are two primary scenarios in which bridged cracks are created such that
K, <K.

The first scenario where K, < K, (for bridged cracks) results from processing flaws
that may exist in the material. Composites with SiC fibers, which are of primary interest in
these applications, are particularly susceptible to large flaws (Bourrat et al., 1995). For
many cases, a processing flaw which spans multiple fibers and is perpendicular to the
loading direction can be thought of as an unloaded bridged crack. For a flaw with no
remote loading, K,;, = 0. As the load is increased, the bridged crack opens monotonically
and K,,, rises. At fixed load (provided K, < K.), some finite time is required to relax the
bridging tractions via creep so that K,,, grows to K, and crack growth occurs.

A second possibility for bridged cracks where K,, < K, is the case of an over-load.
Consider a bridged crack grown under the condition K, = K, ; the crack length will increase
as the load is increased. When the load is decreased, the crack length will remain at the
length reached at the maximum load, but X, will decrease as the applied load decreases
and bridging becomes more effective (McMeeking and Evans, 1990). With sufficient unload-
ing, the condition K,;, < K, will be reached.

The case of a bridged crack where K,,, < K, is not a simple one when unloading occurs.
Upon unloading, the nature of the bridging law governing the bridging traction profile
changes, resulting in a “‘reverse slip zone” where the direction of shear stress between the
fiber and matrix changes (McMeeking and Evans, 1990). With no creep present, the
influence of these reverse slip zones on the bridging law and bridged crack behavior is
straightforward and well understood (McMeeking and Evans, 1990 ; Bao and McMeeking,
1994). Creep complicates the situation and, as of yet, a complete time-dependent bridging
law which incorporates reverse slip is not yet available. A bridging law derived for the case
of “forward slip” will still capture the time dependent nature of the problem, however ; as
such one will be used in this work. The effect of this approximation will be discussed further
in Section 6.

Neglecting the possibility of reverse slip, the problem of cracks created from an
overload is identical to the case where processing flaws are considered to be cracks. The
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initial condition for both cases is taken to be the rate-independent solution for a bridged
crack under a constant applied load.

Initiation times are relevant for these scenarios provided the load is large enough to
grow an unbridged crack in the matrix. Fiber creep will eventually completely relax the
bridging tractions supplied by the fibers, resulting in an unbridged crack in an elastic
material. The applied load must be high enough to propagate this unbridged flaw. Addition-
ally, the load must be below the matrix cracking stress of the composite to prevent cata-
strophic rate-independent cracking [e.g., Marshall et al., 1985 ; McCartney, 1987 ; Cox and
Marshall, 1991].

While initiation times in other materials have been investigated (Schapery, 1975 ; Nair
et al., 1991 ; Knauss, 1993), there has been only two analyses of initiation times for CMCs.
The work of Nair et al. (1991) considered initiation times for CMCs with a time-dependent
interface between the fibers and matrix. Since many CMCs have interfaces which do not
creep, the analysis presented here for frictional slip is more appropriate. El-Azab and
Ghoniem have considered the problem of bridged cracks with creeping fibers in an elastic
matrix with frictional slip (El-Azab and Ghoniem, 1994) ; the method presented here is
meant as an alternative approach to the problem which is more easily connected with
previous rate-independent analyses. Additionally, results are presented for partially bridged
matrix cracks, which are relevant to machined notches and flaws with regions which have
no fibers.

The formulation presented here is easily recognizable in terms of previous bridged
crack models for fiber-reinforced composites (Marshall ez al., 1985; McCartney, 1987
McMeeking and Evans, 1990 ; Cox and Marshall, 1991 ; Bao and McMeeking, 1994 ; Begley
and McMeeking, 1995 ; Begley et al., 1995, 1995a, 1995b). The use of a bridging law based
on a cell model allows for convenient extension of the line-spring models developed for
rate-independent behavior. As such, the method and results described in this work for
time-dependent phenomena can be connected to previous analyses presented for rate-
independent behavior. This is important when considering transitions from stationary
cracks to subcritical or catastrophic crack growth.

Results are presented here for a center crack of length 2a in a panel of infinite width.
The loading is remote tension, as shown in Figure 1. The model is relevant to unidirectional
composites and laminates with an appropriate orientation, as outlined in Begley et al.,
1995a. For the approximations considered in Section 2, the crack is considered to be fully
bridged, while this restriction is relaxed for the general analyses outlined in Section 4.

1.1. The general time dependent bridging law

The derivation of the time-dependent bridging law was outlined in the work of Begley
et al. (1995). The law was derived using a cell model similar to the elastic case; the fibers
are assumed to creep linearly and the matrix is elastic ; frictional sliding occurs between the
fibers and the matrix and is resisted by a time-independent shear stress 7. Residual stresses
are ignored as they usually relax via creep. The result is

o(x, 1) = )t{a(x, ) +fﬁg C(o, t, T)}[%(x, N +2Ba(x, 1)+ Pn <a(x, 1) +f,b’§1 Clo,1, T))]

1)

where ¢ and & are the bridging traction and traction rate, respectively; A is the same
bridging coefficient as the elastic case (where 6 = Ae” [McCartney, 1987 ; Hutchinson and
Jensen, 1990]) and is given by

. _DU-NE;

P 2
Af“1E; E,

D is the fiber diameter; f'is the fiber volume fraction; E, E,, and E, = fE+ (1 —f)E,, are
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Fig. 1. Bridged crack geometry and coordinate systems.

the fiber, matrix and composite elastic moduli, respectively. # is a non-dimensional function
of the elastic moduli, given by

JE— (I{:L—‘f)Em . 3)

The history dependence of the problem is contained in the convolution integrals, C,
given as

Clo,1,T) = J o(x, De =T df 4

—ou
where

T=0=nBE,E " E, (-1

&)

1s the characteristic relaxation time for the intact composite (McLean, 1985). B is the creep
coefficient of the fibers (from the creep law for the fibers, i.e. § = o/E+ Be), and
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8 = BE, )

is a modified creep coefficient with the dimension 7~'. Creep data for Nicalon (SiC) fibers
can be found in (DiCarlo and Morscher, 1991 ; Tressler and DiCarlo, 1993).

1.2. A simplified bridging law for time-dependent bridging in an elastic bulk material

For times much smaller than the characteristic time of the intact composite (i.c.,
t « T), the convolution integrals in (1) can be neglected. With neglect of the convolution
integrals, the bridging law simplifies tot

3(x, 1) = 24a(x, D[e(x, )+ fo(x, ], %)

where
f ﬁ(l N g>= BEfG +fE—Ef) ®)

This approximation is the same as assuming the bulk material surrounding the crack
is elastic (Begley et al., 1995a). Creep then only occurs in the slip zones——small regions
adjacent to the crack plane. The slip length behavior is simplified from that of the full
bridging law, in that the slip lengths will be fixed at constant bridging stress. (As the
bridging stress decreases via creep, however, the slip lengths will increase). Making this
simplification greatly reduces the complexity of the problem, as the history dependence of
the bridging law is removed. That is, the crack opening rate will not be dependent on all
previous values of the bridging stress (and stress rate), merely on the instantaneous values
at a given time. The simplicity of this law makes this an attractive form of the bridging law,
and it is used in Section 4 for full integral equation solutions of bridging traction profiles.

2. APPROXIMATIONS BASED ON PARABOLIC PROFILES

2.1. Derivation of the governing differential equation

Insight into the time-dependent behavior of bridged cracks can be gained by con-
sidering a simple approximation for the spatial dependence of bridging stress for a fully
bridged crack. For very short cracks, or cracks under high loads, the bridging stress profile
is approximated as a separable function in time and space, as in

a(x,1) ® o ,()[1—%°]""* )

where ¥ = x/a and a is the crack haif length.

This profile was chosen because it is asymptotically correct at high loads, where the
bridging traction does not significantly alter the spatial dependence of the crack opening
profile from that of an unbridged crack. Additionally, the rate-independent behavior of
this approximation has been considered previously and provides the basis for determining
when such a profile is applicable (Marshall ez al., 1985). This approximation is compared
with complete numerical results in Section 5.

By explicitly imposing the spatial dependence of the bridging traction, the profile
evolves over time with a self-similar profile. The magnitude of the bridging traction dis-
tribution is given by ¢,(¢) and this is assumed to completely capture the time dependence
of the problem. Thus, the time derivative of the bridging traction distribution is

a(x, 1) = d,()[1 — %], (10)

The near tip crack opening profile can be expressed as (Tada et al., 1985)

t A form identical to this was used in Begley et al., 1995a. The modified creep coefficient is different, however,
as the form previously derived neglects different terms. A simple substitution of the desired form of § is possible ;
hence, the difference does not affect the results.
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o, 1) = §%®\/; (11

where r is measured from the matrix crack tip (see Figure 1). X, is the crack tip stress
intensity factor and £ is a composite elastic modulus which accounts for orthotropy (Bao
and McMeeking, 1994). The stress intensity factor at the crack tip can be expressed in
terms of an integral of the bridging traction distribution via standard elastic fracture
mechanics (Tada et al., 1985). Using (9) to express the spatial dependence of the bridging
stress, this equation for the near tip crack opening profile results:

5r,1) = ﬁ[ 02, )] (12)

The first term is the crack opening due to the applied load ¢, while the second term is
the crack closure due to the bridging tractions. Here, it has been assumed that the crack
opening due to the applied load is constant in time; i.e., creep in the bulk material
surrounding the crack has been neglected.t

Differentiation with respect to time of (12) yields the crack opening rate in terms of
the bridging traction rate

g = =02 40,

The bridging law given as (1) provides a second expression for the crack opening rate.
Using (9) and (10) to represent the spatial dependence of the bridging stress and stress rate,
respectively, the bridging law becomes

(13)

S0 = 201 = 21 {0 +18 £ | 20,0 + 20,0+ (a4 C) | 09
L 1

Note that x = r—a; using this relation, the spatial dependence in front of (14) can be
approximated near the crack tip as ./2r/a. Equating (13) and the bridging law results in
the following differential equation for the magnitude of the bridging stress profile:

R ool 20,04 20,0+ i 0 +55C) | 09

Equation (15) can be normalized by multiplying by 1£%/a?; upon rearrangement, this

gives
[{wﬁgc}[zﬁmn(z+ﬂsgc)]]
T=— - (16)

[8(;2) +2Z42fB— C]

where T =(AEq,(t)/a). Note that the convolution integrals given by (4) have become
functions of X(r) rather than 6,(¢); i.e., C = C(Z,t, T). Equation (16) represents the full
differential equation which governs the behavior of the bridging traction profile.

t This assumption is not completely necessary ; calculations are being done for a bridged stationary crack in
a linearly viscoelastic bulk material.
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2.2, Initial conditions for the bridging stress magnitude

The initial value of the bridging stress magnitude, X(0) is found by equating (12) to
the rate-independent bridging law, given by McCartney, 1985; Hutchinson and Jensen,
1990

8(r, 0) = A[o(r, 0)]°. {amn

The result is a quadratic expression for the initial magnitude of the bridging stress
profile in terms of the applied load. After appropriate normalization, the initial condition
is given by

5(0) = (47:—8> vaz, - %2 (18)

where X, = AEa,/a.

The solution for the bridging stress evolution in time is then obtained by solving the
differential eqn (16) using standard numerical techniques (e.g., the forward Euler method),
where the initial value is given by (18).

2.3. Simplifications of the governing differential equation

Equation (16) can be simplified by considering realistic values of the composite proper-
ties; taking f = 1/3 and E, = E,, = E,, the following expression results after some algebraic
manipulation ;

5, 4. 1 4
. ﬂ[32 +9ZC—27C]

=T T96 2 . (192)
—+224+=C
n 3

where
_ B ,
C= f Z(BhePu-D13T 4f, (19b)

Note that time appears only in the product f; the solution can therefore be determined
without specifying £ directly, as it will appear in the normalized time ft.
Furthermore, considering times much smaller than T allows neglect of the convolution

integrals ;
5 2
b
Y= (20)

[29 +22]
v

The differentiai eqns (19) and (20) were solved numerically and used to compare the effect
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lf=1/3E=E,=E|

1 —— Neglect of integrals (eqn 20)

+===Full numerical result (eqn 19)
—-— Analytical resuit (eqn 22)

()

Z(0)

Bridging traction
magnitude

Time BEft

Fig. 2. Bridging stress magnitude as a function of time for the parabolic approximation.

of neglecting the convolution integrals. The results are shown in Fig. 2, depicting the
bridging stress magnitude as a function of time.

Lastly, for very small X, the bridging stress magnitude in the denominator can be
neglected, leading to

$=———p32 @1

The last simplification is probably not realistic, as small X, corresponds to large crack
lengths or small applied loads, in which case the assumed spatial dependence in (10) is not
accurate. However, this allows an analytical solution which can be quickly compared to
the numerical solutions of (19) and (20). The analytical solution of (21) is given by

Z(0)
S

28.8

() = (22)

1+Z(0) ﬁtl

The result is plotted in Fig. 2 along with the numerical solutions to (19) and (20).

2.4. Crack tip stress intensity factors
Once the bridging stress profile is obtained, the crack tip stress intensity factor for each
instant in time can be calculated in a straightforward manner (Tada et al., 1985);

2 ' o,(f)dx
K1) = 0, /na— \/‘/; [, s @3)

Using the normalization presented earlier and performing quadrature, the non-dimensional
form of K,,, is found to be

o K 2470

O,/ Td o,

The solutions of eqns (19), (20) and (21) can be used with this expression to predict the

24
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Fig. 3. Crack tip stress intensity factors as a function of time using the results of the parabolic
approximation.

stress intensity factor of the matrix crack tip as a function of time. Figure 3 shows (1)
using the results of eqns (19), (20) and (22).

3. EFFECT OF SIMPLIFYING THE BRIDGING LAW ON PARABOLIC APPROXIMATION
RESULTS

The effect of simplifying the bridging law can be determined by examining the results
shown in Figs 2 and 3. As expected, all results show a sharp drop in the bridging stress
over a short time, with a decreasing rate of decay. For higher loads, the bridging stress
drops more quickly, as higher loads (and therefore higher bridging tractions) drive higher
creep rates. The results for the bridging traction profiles affect the crack tip stress intensity
factor as one would expect ; higher loads and faster decay cause the crack tip stress intensity
factor to rise quickly and approach the case of an unbridged crack. It should be noted that
the results in Fig. 3 reflect the decrease in bridging effectiveness as load is increased ; the
curves for higher loads start at greater , as shielding is less pronounced.

For times smaller than 1/f, the approximations to the full equation work fairly well.
(This is on the order of one hour for a SiC/SiC material at 1100°C.) As time increases, the
approximation show increasing error due to the neglect of the convolution integrals given
as (19b). Neglect of the bridging stress term in the denominator in (20) is appropriate at
lower loads but improper at realistic values of normalized load. Indeed, this approximation
does not seem worthwhile, as it appears to be good only for the lowest load case. The
question of interest is whether or not the convolutions in (19) can be neglected.

For short times, the convolution integrals (19) do not significantly contribute to the
time-dependent bridging behavior. As time is increased, they become more significant with
increasingly growing error. This is particularly true for low loads. It is appropriate to
mention that the results for the parabolic approximation are probably not very accurate at
small loads due to inconsistency between the imposed and actual crack opening profile. At
high loads, the error introduced by neglecting the convolutions is negligible.

4. PROBLEM FORMULATION FOR THE GENERAL SOLUTION OF BRIDGED
STATIONARY CRACKS

4.1. Derivation of the governing integral equation
The bridging stress distribution can be solved for exactly (without any assumptions
about spatial dependence) by formulating an integral equation for the time derivative of
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the traction distribution. The derivation follows the same procedure as most bridging
problems ; the crack opening relation from fracture mechanics is equated to the appropriate
bridging law.

In general, the total crack opening profile for a partially bridged center crack in an
infinite body can be written as (Tada et al., 1985)

+\/a —x? 25)

where d,(x, f) is the crack opening due to the applied load, a(x, ¢) is the bridging traction
and q, is the half length of the unbridged region (or notch). The second term represents the
decrease in opening due to the bridging traction supplied by the fibers.

Since the applied loads considered here are constant and the bulk material surrounding
the crack is considered to be elastic, the crack opening due to applied load will be constant
with respect to time. Differentiating (25) with respect to time and equating the result to the
simplified bridging law (given as (7)) yields the following integral equation for the bridging
traction rate profile :

o(x, 1) = d,(x,t)— :_J a(x,1) ln

VR A E R et (1) = —2fle 0 (6)

\/a —x? \/az——xz

where &(x,?) is the time derivative of the bridging traction profile. This equation can be
normalized by multiplying both sides by AE*/a% resulting in dimensionless form of the
governing equation ;

ni_Jao(x Hlin

2 jl 2(%, )H(%, x, 1) de+Z(x, HZ(x, 1) = — F{Z(x, H]? 2n

where o = a,/a is the normalized notch size, the normalized bridging traction is given by
T = AEo/a, and H is a weight function given by

1—'2+~/1— ?
H(x,x,1) =—l (28)
1 — 1=

Note that the spatial location x and dummy integration variable X have been normalized
by the crack length a, rendering them dimensionless.

4.2. Numerical solution of the problem and the initial conditions

The solution of (27) gives the rate of change in the bridging traction profile for a given
time ¢ when the bridging traction profile is known. Since the bridging stress distribution at
time zero is taken as the rate-independent response, the method is self starting in that all
the quantities needed to calculate the time derivatives at time zero are known; as such,
standard methods can be used to solve the differential equation given as (27). The problem
is an iterative one, where the bridging stress rate is determined via (27) for a given time and
used to predict the bridging stress at the next time step. The procedure is summarized in
the Appendix.

4.3. Determining the crack tip stress intensity factor

Once the bridging stress is determined for a given time, the instantaneous values of the
stress intensity factor at the matrix crack tip, K,,,, can be calculated by integrating the effect
of the bridging stress, as was done in Section 2.4 using eqn (23). For this case however, the
spatial dependence of the bridging traction profile cannot be removed (Tada et al., 1985) ;
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K., (¢ 2 ['Z(x,0dx
(o) = Ko _ J (%,1)
o

= =1- .
O',,\/a nx, J1—-x

The discretized values of the bridging traction are used to evaluate the second term. Note
that as time elapses, the relaxation of the bridging tractions will eliminate the effects of
bridging, and the stress intensity factor at the crack tip will approach that of an unbridged
crack.

(29)

5. RESULTS

5.1. Bridging traction profile evolution

Bridging traction profiles are shown for several time steps in Fig. 4(a—) for a fully
bridged crack subjected to three applied loads. The figures reveal that the bridging traction
will rapidly decay as creep relaxes the fibers. At higher loads, the loss of crack tip shielding
is much more rapid. For the fully bridged case, the profiles evolve over time with nearly a
self-similar profile ; indeed, at higher loads the profile is nearly perfectly matched with the
approximation in Section 2 (given by (9)).

The effect of an unbridged region of matrix crack (or notch) is illustrated in Fig. 5(a—
¢). The interesting thing to note is that the bridging tractions at the notch relax away fairly
rapidly ; the curves shown in Fig. 5(a) show that the stress concentration of the notch is
completely relaxed by the time ¢ = 2.5. The reason for the more rapid decay of the traction
at the notch is obvious; the stress at the notch is high and therefore the fibers creep very
quickly. The time histories of the bridging traction at the center of the crack (for the fully
bridged case) and at the notch are shown in Fig. 6. These figures emphasize the rapid
decrease in bridging tractions at these locations when loads are high.

5.2. Crack tip stress intensity factor as a function of time

The traction profiles (such as those plotted in Fig. 4(a-c) and 5(a—)) were used in
conjunction with eqn (29) to predict the crack tip stress intensity factor as a function of
time. The results for three notch sizes and three loads are shown in Fig. 7. As time
progresses, the bridging tractions decay via creep relaxation and K,,, rises. Eventually, creep
completely relaxes the bridging tractions, indicating shielding has disappeared and K,
equals the applied value. The time to crack growth initiation can be determined merely by
computing K, = oa\/;z for a given load and flaw size and finding the time where K,,, = K,
on the appropriate curve in Fig. 7.

5.3. Comparison of full distribution results and assumed profile results

For fully bridged cracks, the parabolic approximation of Section 2 can be directly
evaluated by comparing the results with the more detailed calculations of Section 4. The
bridging stress magnitudes as the center of the crack are compared in Fig. 8. The crack tip
stress intensity factors for the same cases are shown in Fig. 9.

At high loads, the parabolic profile works quite well. Both the curves for the bridging
stress magnitude and the crack tip intensity factor are similar. The agreement between the
parabolic results and the general results at high loads can be quite striking, as the bridging
traction profiles are indeed nearly completely captured by eqn (9). The agreement between
the two cases for these higher loads clearly indicates the solutions presented in Section 2
are quite acceptable for predicting crack growth initiation times for such cases.

For lower loads or larger crack lengths, however, the results may be quite different ;
note the difference in X at time zero in Fig. 8. The differences in the crack stress intensity
factor for these cases can be traced to the error in bridging traction magnitude due to the
incorrect assumed profile. Recall that the approximations in Section 2 were based on
matching the near tip behavior with asymptotic solutions ; subsequently, bridging tractions
farther from the crack tip may have significant error.
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Bridging law: 8= 2A0( & + )
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Fig. 6. Bridging stress at the notch (or center for the crack) for the case for three loads; Z, = 0.1,
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Fig. 7. Crack tip stress intensity factor as a function of time, for three loads and three notch sizes ;
Z,=0.1,1,10;2=0,03,0.6.

6. DISCUSSION

Sections 4 and 5 compare the effect of two different simplifications; the effect of
neglecting the convolution integrals was considered independently from the effect of
approximating the spatial distribution of the bridging traction profile. Clearly, the bridging
law (i.e., the convolution integrals) will affect the resultant bridging traction profile.
However, considering high loads (or short cracks) minimizes the interplay between the two
effects; for these cases, the crack opening profile (and thus the bridging tractions) is
dominated by the near tip behavior of the bridged crack. As such, the comments made
earlier concerning when it was appropriate to neglect the convolution integrals are still
valid. Detailed computations are required to determine the combined effect at intermediate
values of applied load or crack length.

It should be pointed out that crack growth problems, where new fibers are continually
entering the wake of the crack, will behave very differently. As new fibers enter the crack,
they respond elastically ; the near-tip behavior can therefore be thought of as dominated
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Fig. 8. Comparison of the bridging stress at the center of the crack predicted by parabolic approxi-
mation and full bridging calculations (Z,,, is bridging stress from full numerical calculations).
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Fig. 9. Comparison of crack tip stress intensity factors predicted by the parabolic approximation
and full bridging calculations (Z,, is bridging stress from full numerical calculations).

by the short time response of the cell model. Hence, neglect of the convolution integrals is
even more appropriate for crack growth problems.

It should be kept in mind that the solutions presented here neglect the possibility of a
change in the direction of the shear stress in the sliding zone. If the strain rate in the matrix
changes sign, the relative velocity between the matrix and fiber may change sign as well.
This must be accompanied by a change in sign of the interfacial sliding stress. It is important
to note that decreasing bridging tractions alone are a necessary but rot sufficient condition
for reverse slip to occur. The strain rate in the matrix will be comprised of two terms; the
negative strain rate resulting from unloading of the unit cell and the positive strain rate due
to fibers shedding load to the matrix. Only when the sum of these two terms is negative will
the strain rate in the matrix be negative.

The models presented here neglect the possibility of a negative strain rate in the matrix.
Such a situation, referred to as “‘reverse slip””, is much more cumbersome to analyze when
creep is present than it is for the rate-independent case. If fibers are creeping, the length of
the “forward slip” zone is no longer necessarily constant, and the possibility exists that
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both forward and reverse slip zones are time-dependent. A time-dependent bridging law
which accounts for this is currently under development.

For stationary cracks, reverse slip zones would be more prevalent as the entire bridged
region of the crack is unloading. In crack growth problems, however, the fibers near the
tip region of the crack experience sharp increases in stress, decreasing the likelihood of
reverse slip in this region. Since the near tip region has a dominant effect on crack velocity,
it is reasonable to speculate reverse slip will not alter crack growth studies significantly.

7. SUMMARY

The time-dependent behavior of stationary cracks is shown to be well approximated
by an appropriate assumed form of the bridging traction profile for very short cracks and
high applied loads. For these cases, the simplification of an assumed profile allows the time
dependence of the bridging stress profile to be captured in a single term. The relative
effect of various approximations to a rather complicated bridging law can therefore be
investigated in an efficient manner. The results show that the history dependence of the
crack opening rate can be reasonably neglected at short times and for higher loads. With
this in mind, full solutions for the bridging stress profile evolution were calculated using a
simplified bridging law. The bridging stress profile evolution can be translated into evolution
of the crack tip stress intensity factor. These results can be used in a straight-forward
manner to predict initiation times for bridged cracks in ceramic matrix composites with
creeping fibers.
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APPENDIX

The initial bridging stress profile at 7 = 0 is determined by solving the non-linear integral equation that results
from the rate-independent analysis (Marshall e al., 1985 ; McCartney, 1987; McMeeking and Evans, 1990 ; Cox
and Marshall, 1991 ; Bao and McMeeking, 1994 ; Begley and McMeeking, 1995a ; Begley and McMecking, 1995b)
For a center crack under remote tension, the governing equation for the initial traction profile is

2
E{:l +f1 Z(R)H(%,x,1)d% = Z,./1—x*

where T, = 1£0,/a is the normalized applied load.

The integral equations for the bridging tractions and their derivatives can be solved using the standard
discretization technique summarized in [Begley and McMeeking, 1995b]. The result is a linear matrix equation
for the bridging stress rate and a quadratic matrix equation for the initial condition. The differential equation
given as (27) was integrated using a simple forward Euler method.

The fact that the crack is stationary greatly reduces the complexity of the problem ; since the crack length is
not changing, the coefficient matrix of the linear matrix equation (resulting from discretization of (27)) is the same
for each time step. Once the coefficient matrix is filled in the usual manner, the vast majority of computational
time is completed once and for all, and the solution proceeds quite rapidly. It is for this reason that a simpie time
integration scheme such as the forward Euler method used here is acceptable. Quick evaluation of the time
derivatives means very small time steps can be taken without much penalty in computation time, insuring accuracy.



